Students sat with their partners from Barbie zipline day 1 and we begin by reviewing the scenario and their calculated flagpole height.

Next we discussed how this zipline will work. I used a string and a binder clip to make a model zipline, using a very steep slope for the zipline and I asked students to predict what would happen if Barbie came down a zipline like this. They agreed that she would fall too fast and get hurt. Next, I held the string almost horizontal and asked how this zipline would work – and students agreed that she would get stuck or mover too slowly.

I explained that the goal for this day is to use a model in class to determine a plan for Barbie to zipline down safely from the top of the flagpole. By the end of class, students had to know what angle of elevation they planned to use and how far from the base of the flagpole they needed to place the end of the zipline.

This day felt a little chaotic, but students did end up finding errors in their measurements by verifying their calculations in a variety of ways. The worksheet belowincorporated a range of geometry topics including:

Pythagorean Theorem

right triangle trigonometry to calculate lengths

inverse trigonometric functions to determine angles

similar triangles

Tomorrow, we test our calculations outside on the the flagpole.

[…] Day 2: Design a model and calculate angle of elevation, zipline length, and ground distance. […]

[…] is the conclusion of a three day lesson applying right triangles. Here is day 1 and day 2. Eric is my apprentice teacher and he initiated this […]